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ABSTRACT9

Clarifying the relationship between regular earthquakes and slow fault slip is essential for understanding the mechanisms
behind seismic activity. We hypothesize that the background seismic activity is partially triggered by interplate slow-slip events
(SSEs). Consequently, we present an extension of the spatio-temporal epidemic-type aftershock sequence (ETAS) model,
which incorporates background seismicity as a piecewise constant function over time based on recent advances in the inference
of space–time inhomogeneous point processes. In this study, Global Navigation Satellite System (GNSS) data is employed
to identify the occurrence periods of SSEs, thereby delineating the intervals during which changes in background seismicity
may occur. Due to the technical complexity of performing inference with an inhomogeneous ETAS model, this work employs a
maximum likelihood inference method using the Expectation-Maximization (EM) algorithm. This approach also enables the
inference of the branching process for aftershocks, allowing for the estimation of earthquake genealogy. This study elucidates
how the background seismicity increases during the periods of SSEs in Guerrero, Mexico and Boso Peninsula, Japan, which
allows for a more comprehensive understanding of seismic activity and the relationship between slow and fast earthquakes.

10

1 Introduction11

At the boundaries between tectonic plates, two types of spontaneous and episodic fault slip phenomena occur: fast (regular)12

earthquakes and slow earthquakes. These fault slip phenomena are closely related. Among slow earthquakes, those with13

a relatively large magnitude (approximately Mw 5 or greater) that can be detected geodetically are referred to as slow slip14

events (SSEs)1. It has been observed that SSEs often trigger small to moderate earthquakes in the Sagami Trough subduction15

zone in Japan2. Furthermore, SSEs have preceded and possibly triggered megathrust earthquakes at several subduction plate16

boundaries3, 4.17

Global Navigation Satellite System (GNSS) networks provide detailed daily information on crustal deformation and allow18

to detect and describe SSEs5–8. SSEs have also been discovered and studied in various regions worldwide, including, Middle19

America Trench9, the Japan Trench10, 11, the Hikurangi subduction zone in New Zealand12 , and Peru13. In these regions, SSEs20

occurring at the plate boundary are thought to significantly impact seismic activity, and therefore quantifying the impact of21

SSEs is essential for improving the accuracy of earthquake forecasts.22

The modeling and forecasting of fast-earthquake activity in a stochastic context has been widely accepted by the seismo-23

logical community since the presentation of the seminal article by Ogata14, in which the epidemic-type aftershock sequence24

(ETAS) model is defined using the Hawkes process. Moreover, Zhuang et al.15 made an important extension to the ETAS25

model by the inclusion of a spatio-temporal component in the intensity function (i.e., seismicity rate). In addition, Li et al.16
26

have studied in detail the inference of the background intensity function (i.e., the background seismicity rate in seismological27

terms) in spatio-temporally inhomogeneous point processes, this work was a pillar in the development of the model presented28

in section 2.29

The detection of aseismic transients and their relationship to seismicity have been extensively studied. There have been30

several studies of seismicity changes due to aseismic transients considering only the time domain17–21. For example, Okutani &31

Ide22 investigated the impacts of SSEs on seismic activity using the temporal ETAS model. They proposed a model called the32

boxcar model, in which the background seismicity rate increases in a boxcar-like manner during the slow slip period estimated33

from geodetic observations. Their approach is similar to that one presented by Mattews & Reasenberg23, who investigated the34

quiescence of microearthquakes through a temporally inhomogeneous Poisson process, using a piecewise constant function.35
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Nishikawa & Nishimura24 presented a variant of the ETAS model that explicitly links an increase in background seismicity36

to detected SSE. Although their research has made significant advances in the modeling and forecasting of seismic activity37

associated with SSEs, it does not account for the spatio-temporal changes that may occur in background seismic activity during38

SSE periods.39

As described above, extensive research has been conducted on time-domain analysis. In this work, however, the focus is on40

spatio-temporal seismicity modeling.41

Llenos & McGuire25 proposed a complex model that combined the ETAS model and the rate- and state-dependent friction42

seismicity model26 to detect seismicity rate changes induced by aseismic transients. They adopted a tricky approach to subtract43

the coseismically triggered seismicity rate estimated by the conventional spatio-temporal ETAS model from the total seismicity44

rate and related the residual seismicity rate to the rate- and state-dependent friction seismicity model.45

It is important to highlight the contributions of Marsan et al.27 and Reverso et al.28 to the spatio-temporal modeling of46

seismicity associated with aseismic transients. Both papers propose a way to model the evolution of the seismicity using a47

mesh over space and time. They used the conventional spatio-temporal ETAS model throughout the entire period as a null48

model, and for each earthquake occurring at time ti in the location (xi,yi), they fit a locally elevated background intensity using49

earthquake records where (t j,x j,y j) satisfy50

|t j− ti|<
τ

2
,

|x j− xi|<
L

2
,

|y j− yi|<
L

2
,

for all n, where τ and L are parameters that control the size of the spatio-temporal window. If the locally estimated background51

intensity significantly differs from that of the null model, as determined by the criterion specified in each study, they replace the52

background intensity of the null model by the locally estimated value within the vicinity. Additionally, Reverso et al.29 have53

presented a pioneering work relating the ETAS model with SSE, following the ideas presented in28.54

Possible improvements to the methods of Marsan et al.27 and Reverso et al.28 include the utilization of geodetic observations.55

In their methods, τ and L are subjectively chosen (e.g., τ is set to 1 day, 40 days, or 100 days). However, particularly for τ ,56

the duration of an aseismic transient can sometimes be estimated based on geodetic data, which can then be used as τ .57

Furthermore, they use the small spatio-temporal windows for each earthquake one by one to estimate the local background58

intensity via maximum likelihood estimation, sequentially comparing it to the null model. However, this is an approach adopted59

for simplicity. Ideally, the background intensities of multiple windows should be varied simultaneously to estimate the set of60

background intensities that maximize the likelihood.61

In light of the aforementioned studies, this research proposes a new modification of the spatio-temporal ETAS model that62

incorporates the impact of SSEs on seismic activity (Section 2.2). Our model determines the periods in which the background63

intensity changes based on GNSS observations and simultaneously estimates the spatial distribution of the background seismicity64

rate for each period. This model is mathematically grounded by Li et al.16.65

We apply the new model to Mexican earthquakes in the Middle America subduction zone and elucidate the impact of SSEs66

on the background seismicity within this subduction zone, which is a topic that has not been addressed from the perspective of67

statistical modeling to date. In addition, the model was applied to the Boso Peninsula, located in the Sagami Trough subduction68

zone in Japan, a region that has been previously studied and has exhibited substantial changes in the seismic activity during69

SSE22, 30. Our new model will be a useful tool in the future for elucidating the characteristics of seismic activity associated with70

SSEs worldwide.71

2 Methodology72

2.1 Introduction to Spatio-Temporal ETAS Model73

The spatio-temporal ETAS model is a marked branching point process for earthquake occurrences, and its behavior can be74

completely defined through its conditional intensity function given by75

P(an event in [t, t +dt]× [x,x+dx]× [y,y+dy] (1)
× [M,M+dM]|Ht) = λ (t,x,y,M|Ht)dtdxdydM+o(dtdxdydM),

where M is the magnitude, (x,y) denotes the spatial coordinates, t represents the elapsed time, and Ht denotes the space-time76

and magnitude occurrence history of the earthquakes up to time t15. In particular, based on its assumptions, the spatio-temporal77
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ETAS model has78

λ (t,x,y|Ht) = µ(x,y)+ ∑
{k:tk<t}

k(Mk)g(t− tk) f (x− xk,y− yk|Mk), (2)

where the subindex k refers to the values of the k−th event considered, with k = 1,2, ...,n, (xk,yk) are its spatial coordinates, tk79

is the time of occurrence, and Mk is its magnitude. Without loss of generality, in this work it is assumed that tk, k = 1,2, ...,n80

are ordered in increasing order. Furthermore,81

k(M) = Aeα(M−M0) (3)

g(t) = (p−1)cp−1(t + c)−p
1(t > 0) (4)

f (x,y|M) =
1

2π
√

d1d2eα(M−M0)
exp

{
− 1

2
1

eα(M−M0)

( x2

d1
+

y2

d2

)}
, (5)

where M0 denotes a reference magnitude, typically the minimum observed value, although in some cases a higher cutoff
magnitude is adopted to reduce computational load31, and

1(t > 0) =

{
1, if t > 0
0, otherwise

.

Different authors15, 32 have used the Gaussian probability density function in equation (5). In this work, we assume that82

d1 = d2 for the sake of parsimony, since the aftershock classification does not show significant differences compared to the case83

d1 ̸= d2 for the Mexican data, as can be seen in Figures 6 and 15a.84

Another popular option is to use a Pareto distribution33–35, given by

fPareto(x,y|M) =
q−1

π
√

d1d2eγ(M−M0)

(
1+

1
eγ(M−M0)

( x2

d1
+

y2

d2

))−q
,

which can also be seen as a particular case of the bivariate t-distribution. The advantage of using the Pareto distribution is85

to avoid overestimate the background seismicity function. Nevertheless, for our Mexican data, the heavy tails of the Pareto86

distrubtion classify as aftershocks earthquakes that are unrealistically far from their respective mainshocks as it can be seen in87

Figure 15b in Appendix App. 1.88

By defining µ(x,y) = νu(x,y) and assuming stationarity, Zhuang et al.15 propose the estimator of µ as89

µ̂(x,y) =
1
T ∑

j
(1−ρ j)

1
2πd2

j
exp

{
− x2 + y2

2d2
j

}
. (6)

where d j is a bandwidth that depends on how many earthquakes are close to the event j, and 1−ρ j is the probability that the90

j−event is an immigrant (i.e., background event).91

µ̂ is fitted in an iterative two-step procedure, in the first iteration the vector η = (ν ,A,α,c, p,d) is fitted, in the second step92

the vector η is taken as known and µ̂ is updated until the convergence of the log-likelihood93

ℓ(η) :=
n

∑
k=1

log(λη(tk,xk,yk|Htk))−
∫ T

0

∫∫
S

λη(t,x,y|Ht)dxdydt, (7)

is reached, where the analysis time is [0,T ], and S is the analysis region.94

It is worth mentioning the novel nonparametric Bayesian approaches to model µ . Ross & Kolev32 also assume that µ fulfills
µ(x,y) = νu(x,y), where u is a probability density function and ν is a positive real number. This allows the use of a mixture of
Dirichlet processes (MDP)36 as the prior for u(x,y). On the other hand, Molkenthin et al.35 assume that µ can be written as

µ =
v

1+ e−w(x,y)
,

where a Gaussian Process (GP) prior is used for w. The main advantage of using the MDP approach is that the function u95

always integrates 1, since it is a probability density function. In the case of GP, the integral can not be solved analytically;96

nevertheless, using the GP approach avoids the need for a finite approximation of the infinite mixture required in the MDP case.97

It is important to mention that Veen & Schoenberg37 discuss in detail the numerical stability problems of maximizing the98

likelihood of the spatio-temporal ETAS model directly. They proposed using the Expectation-Maximization (EM) algorithm to99

improve the inference performance, this idea was one of our motivations to develop our model (Section 2.2).100
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Extending the ideas presented by Veen & Schoenberg37, Fox et al.38 modeled the background intensity rate as a piecewise101

constant function, which allows a numerically efficient way to realize the approach proposed by Veen & Schoenberg37
102

with spatial inhomogeneities. The modeling of the background seismicity as a piecewise function is also used by different103

authors39, 40 to infer the intensity function. Our approach (Section 2.2) intends to advance the method proposed by Fox et al.38
104

by considering temporal inhomogeneities that will act as triggering effects due to SSEs.105

Another advantage in following the approach presented by Veen & Schoenberg37 and Fox et al.38 is that the structure of106

the branching process is inferred in addition to estimating the intensity function. Therefore, we can easily distinguish which107

earthquakes are background events and which are aftershocks, as shown in the results obtained in section 4.108

Since the ETAS model was introduced by14, the completeness of catalogs remains crucial for the correct estimation of the109

model. This is the reason that authors such as Seif et al.33 have made significant efforts to analyze the consequences of missing110

recorded aftershocks on the biases of the estimators. In their work, they argue that a possible solution to avoid incompleteness111

in aftershock sequences after a strong earthquake is to use a large cutoff magnitude. However, this can result in some seismic112

activity as foreshocks are not being observed and it is important to consider that the inclusion of small earthquake reduce the113

bias in the ETAS model estimators.114

Short-term aftershock incompleteness has been extensively studied in sismology41, 42.This is a problem of blindness,115

whereby small earthquakes are undetectable when the signal is saturated by a strong earthquake. Empirical relationships have116

been propose to model the STAI effect43. In the context of the ETAS algorithm, in recent years Hainzl31 has proposed the117

ETASI model, which incorporates the STAI phenomena into the ETAS model by adding a temporary dependence on the number118

of expected events. The ETASI model has been recently extended by Asayesh et al.44, where the spatial kernel of the ETASI119

model was modified to incorporate information from the stress scalars.120

Although STAI is an important phenomenon to take into account, the cutoff magnitudes used in this study are not low121

enough to appreciate this phenomenon as it can be seen in Figure 13 in Appendix App. 1. Therefore, we chose to keep b-values122

and cutoff magnitudes constant throughout the entire period.123

We also wish to point out that, in order to model spatial variation in aftershock activity parameters, authors such as Ogata45
124

and Ueda et al.46 extended the spatio-temporal ETAS model15, allowing parameters such as p and the productivity K to become125

spatially varying functions. However, the issue of identifiability in their approach required the imposition of a smoothness126

penalization on the functions p, and K. Nevertheless, extending µ , K, and p to functions of (x,y, t) leads to identifiability127

problems, since changes in seismicity induced by strong earthquakes can occur abruptly in both space and time, rendering128

smoothness penalization ineffective. For this reason, our work only considers temporal inhomogeneity through µ .129

2.2 Model130

Following the idea of Nishikawa and Nishimura24, we model the inhomogeneities in the ETAS model through changes in the131

background seismic activity. The reason for this is that µ is usually related to tectonic loading and the relative velocity of132

plate motion47. If we regard slow slip as an increase in tectonic loading or interplate slip rate, it is natural to model it through133

changes in the background seismic activity. However, we cannot deny the impact of SSEs on aftershock activity. Addressing134

this issue is an important direction for future work.135

Since the aim of this work is to model the triggering effect of SSEs, the assumption of stationarity may not be realistic. In136

addition, Veen & Schoenberg37 have discussed that the approach introduced by Zhuang et al.15 is numerically expensive and137

unstable because it is necessary to optimize (7).138

To describe the triggering effect due to SSEs, this work proposes to use139

λ (t,x,y|Ht) = µ(x,y, t)+ ∑
{k:tk<t}

k(Mk)g(t− tk) f (x− xk,y− yk|Mk),

which is an extension of (2) because it allows a time dependent µ function. However, due to the complexity of working with an140

arbitrary form of µ , in this study, it is defined as141

µ(x,y, t) =
m

∑
i=0

µ
i(x,y)1(t ∈ Si,Ei), (8)

where m is the total number of SSEs and Si,Ei are the start and end times of the i−th SSE, with i = 1, ...,m. In the case of i = 0,142

Si = 0,Ei = T , i.e. µ0 represents the background seismicity over the entire period, regardless of the presence of an SSE, and143

the remaining µ i with i=1,2,...,m represent the increase of the background seismicity with respect to µ0. Thus, the intensity is144

given by145

λ (t,x,y|Ht) =
m

∑
i=0

µ
i(x,y)1(t ∈ Si,Ei)+ ∑

{k:tk<t}
k(Mk)g(t− tk) f (x− xk,y− yk|Mk). (9)
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As presented by Veen & Schoenberg37 and discussed in detail by others48, 49, the Hawkes process could be defined as a146

marked Poisson cluster process where there are two kind of events, immigrants (background events) and offspring (aftershocks),147

which allows the use of the EM algorithm to maximize the likelihood.148

McLachlan & Krishnan50 discussed the EM algorithm in detail and showed that it is useful when there is missing information149

which, if known, makes the maximization of the complete likelihood easier. The EM algorithm is an iterative algorithm that150

maximizes the likelihood using a two-step procedure, the first step (Expectation) replaces the unknown information by the151

expected one with the help of an initial value for all the parameters, and the second step (Maximization) uses the expected152

values obtained in the previous step to optimize the likelihood defined by the augmented information, these two steps are153

repeated until the convergence of the augmented likelihood.154

The development of the model in this section is mathematically based on that proposed by Li et al.16, but the definition of
λ (t,x,y|Ht) by them differs from that presented in (9). In their work they assumed

µ(x,y, t) = αu(x,y)v(t),

where α is in R+, and u and v are positive functions. Since SSEs are spontaneous large fault slip events with variable slip155

evolution, the spatial and temporal contributions to background seismicity cannot be assumed to form a product over the entire156

period. Therefore, we preferred to use the expression in (8).157

It is also important to mention that they are not working with a marked point process and that their intensity function does
not incorporate information about event magnitudes. However, they use the kernel of a gamma distribution for the decay in the
aftershock activity over the time with parameter α = 1:

gL(t) = βe−β t

where β is in R+. Their expression differs from (4), proposed by Zhuang et al.15, which is based on Omori’s law51 and is also158

adopted in our study.159

From the observed data, it is not known whether an earthquake is a background event or an aftershock, and if it is a160

background event, it is also not known whether it comes from the process with intensity µ0 or from µ i when the i−th SSE161

occurs. Therefore, the following random variables are defined:162

χ
s
ii =

{
1, if earthquake i is a background event, and it is produced by µs

0, otherwise
(10)

χi j =

{
1, if earthquake i is an aftershock of j
0, otherwise

, (11)

where s = 0, ...,m.163

The random variables defined in (10) and (11) are an extension of those presented in the supplementary material by Fox et164

al.38, where only one χii is introduced for the background intensity over the entire period, while here the triggering effect of165

multiple SSEs is modeled in a similar way to the model by Li et al.16. In the present work, µ i(x,y) is defined as a piecewise166

constant function for all i:167

µ
i(x,y) =

ny

∑
u=1

nx

∑
v=1

µ
i
uv1((x,y) ∈ Duv), (12)

where Dkl = ((u−1)∆x,u∆x)× ((v−1)∆y,v∆y), ∆x and ∆y are the step size in the partition of the x and y axes, also nx and ny168

are the number of grids for each axis. The advantages of defining µ i(x,y) in this way is to facilitate the integral over the space169

in (17) to recover a closed expression in the maximization step, as it can be seen in (19). The grid applied in this study is shown170

in figure 1.171

The total amount of parameters to be estimated by (12) are nynx for each µ i, with i ∈ 0,1, ...m. Furthermore, because of172

(3) to (5), we have the five aftershock parameters (A,α,c, p,d) to be estimated. Additionally, we must estimate the whole173

branch structure given by n(n−1)/2 elements in χi j and ∑
m
i=1 ni elements in χs

ii, where ni is the total number of earthquakes174

that occurred during (Si,Ei).175

In this work, the array that contains all the parameters of the previous paragraph is denoted by θ , i.e.

θ = ({χii}i∈I ,{χi j}i j∈I×I ,A,α,c, p,d).
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where I = {1,2, ...,n} and × denotes the cartesian product. It is important to note that the enormous amount of parameters176

will produce a not well-posed problem, the optimization of the likelihood has been constrained, following52 according to the177

expression (20). This study assumes that the parameters controlling the aftershock intensity (A,α,c, p,d) do not change over178

time.179

If the branch structure were known, the log-likelihood of the complete information (ℓc) would be defined as180

ℓc(θ) = ℓ∗O(θ)+ ℓ∗I (θ),

where ℓO(θ) is the log-likelihood due to the offspring, and ℓI(θ) is the log-likelihood due to immigrants. They are given by181

ℓ∗I (θ) =
m

∑
s=0

[ n

∑
i=1

χ
s
ii log(µs

θ (xi,yi)1(ti ∈ (Ss,Es)) (13)

−
∫ T

0

∫∫
S

µ
s
θ (xi,yi)1(t ∈ (Ss,Es))dxdydt

]
ℓ∗O(θ) =

n

∑
j=1

[
∑
i> j

χi j log
(

kθ (M j)gθ (ti− t j) fθ (xi− x j,yi− y j|M j)
)

(14)

−
∫ T

t j

∫∫
S

kθ (M j)gθ (t− t j) fθ (x− x j,y− y j|M j)dxdydt
]
,

where the subindex θ in kθ ,gθ , fθ and µs
θ

means that the functions k,g and f are defined using the parameters (A,α,c, p,d)182

given by the array θ where the log-likelihood is evaluated.183

It is important to note that (10) and (11) are not independent random variables, the sum of all entries in the vector184

(χ0
ii , ...,χ

m
ii ,χi,1, ...,χi,i−1) is always 1 for all i = 1, ...,n, i.e., it is a vector with a multinomial distribution. This means that if185

we have a set of parameters θr, the expected value of the entries for all i in 1,2, ...,n is given by186

E(χs
ii|θr) = p̂s

ii =
µs(xi,yi)

λθ0(ti,xi,yi|Hti
)
1(ti ∈ Ss,Es) with s = 0,1, ...,m (15)

E(χi j|θr) = p̂i j =
k(M j)g(ti− t j) f (xi− x j,yi− y j|M j)

λθ0(ti,xi,yi|Hti
)

with j = 1, ..., i−1. (16)

The equations (15) and (16) correspond to the expectation step in the EM algorithm. The next step is to replace the χ values in187

(13) and (14) by their expected values. Using θr as the initial parameter value,188

ℓI(θr) =
m

∑
s=0

[ n

∑
i=1

p̂s
ii log(µs

θr
(xi,yi)1(ti ∈ (Ss,Es))− (17)

∫ T

0

∫∫
S

µ
s
θr
(xi,yi)1(t ∈ (Ss,Es))dxdydt

]
,

ℓO(θr) =
n

∑
j=1

[
∑
i> j

p̂i j log
(

kθr(M j)gθr(ti− t j) fθr(xi− x j,yi− y j|M j)
)

(18)

−
∫ T

t j

∫∫
S

kθr(M j)gθr(t− t j) fθr(x− x j,y− y j|M j)dxdydt
]
.

It is important to note that since the real branch structure (genealogy) of the earthquakes is unobservable, the equations (13)189

and (14) cannot be evaluated. However, when the real values are replaced by their expected values as in (17) and (18), they can190

be computed.191

Another advantage of the EM approach is that all parameters concerning µ i are only in (17), while the parameters
(A,α,c, p,d) are only in (18), therefore the optimization can be done separately. To solve (18) it is important to note that∫ T

t j

∫∫
S

kθr(M j)gθr(t− t j) fθr(x− x j,y− y j|M j)dxdydt

can be rewritten as

kθr(M j)
∫ T

t j

gθr(t− t j)dt
∫∫

S
fθr(x− x j,y− y j|M j)dxdy.
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The utility of taking the expressions in (4) and (5) is that the integrals can be solved easily, since∫ T

t j

gθr(t− t j)dt = 1− cp−1(T − t j + c)−p+1

and the spatial integral ∫∫
S

fθr(x− x j,y− y j|M j)dxdy,

which corresponds to the double integral of a bivariate Gaussian distribution, which can be solved efficiently using Monte Carlo
methods. As an additional note,53 suggests the following approximation with different k, g and f functions∫ T

t j

∫∫
S

kθr(M j)gθr(t− t j) fθr(x− x j,y− y j|M j)dxdydt ≈ kθr(M j),

this approximation holds if almost all aftershock activity occurs in the observed space and time, which is a very easy assumption192

to satisfy and it can lead to produce important reductions in computing time. We mention this approach because it has been used193

by different authors32, 38, nevertheless, the implementation of algorithm 1 in this work does not use it because, as mentioned194

in54, it can generate inaccuracies in the estimation process.195

Regarding (17), it is easy to find that the solution of196

∂

∂ µ
j

uv

m

∑
s=0

[ n

∑
k=1

p̂s
ii log(µs

θr
(xk,yk)1(tk ∈ (Ss,Es))

−
∫ T

0

∫∫
S

µ
s
θr
(xk,yk)1(t ∈ (Ss,Es))dxdydt

]
= 0

is197

µ̂
j

uv =
∑

n
k=1 p̂ j

ii1((xk,yk) ∈ Duv)1(tk ∈ (S j,E j))

(E j−S j)∆x∆y
. (19)

The main advantage of using the piecewise expression of µ i is to retrieve a closed expression in (19), which enables a fast198

updating of the parameters. However, the main weakness of this approach is that only the earthquakes inside of Dkl update the199

value of µ i
kl , and a smooth estimation of µ i is not achieved.200

To address the not well-conditioned problem we restrict the optimization problem, the parameter A must be less than 1, i.e.201

we are assuming that the smallest earthquake have less than one expected aftershock. Regarding the α value we followed the202

idea of Ross & Kolev32 of use the Helmstetter et al.52 inequalities.203

Assuming the Gutenberg-Richter law55, the random variable (M−M0) is distributed as an exponential random variable56

with rate b log(10), where b is the b−value of the Gutenberg-Richter law. Then, we can calculate the average number of
offspring created per event, which is defined by

r :=
∫

∞

M0

Aeα(M−M0)b log(10)e−b log(10)(M−m0)dM.

In order to guarantee that r is finite and it is less than one, the following conditions must be fulfilled52
204

α < b log(10),
Ab log(10)

b log(10)−α
< 1. (20)

Consequently, in this work we allow only parameters of A and α that satisfy the inequalities in (20).205

During this study, we assumed a constant b-value over time and across the entire study region. This value was estimated206

using the maximum likelihood method57. Tests were also performed in Mexico using the b-positive estimator42 and the novel207

estimator presented by Lippiello & Petrillo58 called b-more-positive; however, the ETAS model estimators did not change208

significantly. Furthermore, Table 1 in Appendix App. 1 reports estimations assuming b-value lower and higher than those209

obtained via MLE, b-positive method and b-more-positive and the parameters did not show any important change with respect210

to those presented in section 4.1.211

Although the choice of the MLE estimator or the family of b-positive estimators does not generate significant changes in212

our ETAS model estimators, we note that Nandan et al.59 introduced a variant of the ETAS model that allows different b-values213
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to be considered. They speculate that the magnitude of the mainshock may affect the b-value for its triggered earthquakes.214

Also, Ito & Kaneko60, who, using continuum models of fully dynamic earthquake cycles with fault frictional heterogeneities,215

have observed that the b-value of foreshocks decreases with time prior to the mainshock.216

Furthermore, as noted by61, the b-value also exhibits a spatiotemporal distribution, which we plan to analyze in detail in217

future work.218

For c and p parameters, we restrict the acceptable values to be between [0,5] and [1,2]. We are being very flexible in our219

boundaries, since Holschneider et al.62 have observed that c and p are weakly identifiable.220

In the case of d, with units deg2, we restrict the optimization algorithm to be in (0,1), the idea of take 1 as the upper limit is221

be noninformative.222

The maximization step in the EM algorithm consists in solving223

θr+1 = argmax
θ

ℓI(θr)+ ℓO(θr) (21)

Finally, by replacing r by r+1 the Expectation and Maximization steps must be iterated until |θr−θr+1|< ε , where ε > 0224

is the convergence criterion. In this work, the optimization was done using the implementation of the L-BFGS-B algorithm in225

python using the implementation in scipy63.226

As a summary of the EM algorithm that is used in section 4 to detect the earthquake triggering effect of SSEs, the pseudo227

code is presented in the algorithm 1.228

Algorithm 1 Expectation Maximization Algorithm of Inhomogeneous Spatio-Temporal ETAS

1: Input values: Initial values of θ , tolerance level ε

2: Start r← 0, define θr = θ , εr = ε

3: while εr ≥ ε do
4: Calculate µ̂ i

kl for i in 0,1,...,m, with k in 1,2, ...,nx and l in 1,2, ...,ny as in (19)
5: Find (A,α,c, p,d) that maximize ℓO(θr)
6: Calculate p̂s

ii and p̂i j as it was presented in (15) and (16)
7: Define θr+1 using µ̂ i

kl from line 4, (A,α,c, p,d) from line 5, and p̂s
ii and p̂i j from line 6

8: εr← |θr−θr+1|
9: r← r+1

10: end while
11: Return θr

The initial values of p̂s
ii and p̂i j used in Algorithm 1 are defined by the following matrices229

PO =



0 0 0 0 . . . 0
1
2 0 0 0 . . . 0
1
3

1
3 0 0 . . . 0

1
4

1
4

1
4 0 . . . 0

...
...

...
...

. . .
...

1
n

1
n

1
n

1
n . . . 0


,

PI =


1(t1∈(S0,E0))

∑
m
i=01(t1∈(Si,Ei))

1(t1∈(S1,E1))
∑

m
i=01(t1∈(Si,Ei))

. . . 1(t1∈(Sm,Em))
∑

m
i=01(t1∈(Si,Ei))

1(t2∈(S0,E0))
2∑

m
i=01(t2∈(Si,Ei))

1(t2∈(S2,E2))
2∑

m
i=01(t1∈(Si,Ei))

. . . 1(t2∈(Sm,Em))
2∑

m
i=01(t2∈(Si,Ei))

...
...

. . .
...

1(tn∈(S0,E0))
n∑

m
i=01(tn∈(Si,Ei))

1(tn∈(S2,E2))
n∑

m
i=01(tn∈(Si,Ei))

. . . 1(tn∈(Sm,Em))
n∑

m
i=01(tn∈(Si,Ei))

,

 ,

taking p̂s
ii as the entry (i,s) of PI and p̂i j as the entry (i, j) of PO. The idea of the above matrices is to try to reflect the unknowns230

about the branching structure, starting with uniform distributions between being an aftershock or a background event, and231

uniformity among µs that could generate the event if it is a background event.232

All the codes used to fit the above model and generate the images in this work are available in https://github.com/233

isaiasmanuel/ETAS. The code used to perform Algorithm 1 is available in EM2.py. Also, the figures in this study were234

produced using the code GNSSETAS_Figures.py.235
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2.3 Hypothesis Testing236

To verify if there is an improvement of our model, i.e., by adding µ i for i = 1,2, ...,m with respect to the model which only has237

µ0, a hypothesis test must be performed to analyze the significance of the results. Due to the complexity of the model presented238

in Algorithm 1, it is not straightforward to derive the theoretical joint distribution of the estimators and determine the rejection239

regions. For this reason, we propose a Likelihood Ratio Test (LRT) based on parametric bootstrapping64.240

Since bootstrap is a resampling approach that requires simulating synthetic earthquake catalogs, we will simulate the241

synthetic catalog in a similar way to Ross & Kolev32, based on the cluster process representation of the Hawkes process65, the242

advantage of this approach is avoiding the methodology of thining as in Fox et al.38 that requires more computational time. The243

simulation of synthetic catalogs is as follows244

1. We simulate our synthetic mainshocks for each square Duv defined in the equation (12), and for each interval i = 1,2, ...,m,245

from a Poisson distribution with mean µ i
uv(Ei−Si)∆x∆y, the occurrence time of this event is simulated from a uniform246

distribution in (Si,Ei) and the magnitude is simulated from the Gutenberg-Richter law with the b−value estimated via247

maximum likelihood from the real catalog57.248

2. For each simulated earthquake j that it is direct offspring have not been calculated previously, we simulate the number of249

direct offspring from a Poisson distribution with mean Keα(M j−M0), and the offspring locations and times are simulated250

directly from random variables with densities given by equations (4) using t = t j and (5) using (x j,y j). If the new251

earthquakes have times larger than E0 or if they are outside of our study area, they are discarded.252

3. Repeat the previous step until no new offspring is generated.253

The code to simulate synthetic earthquake catalogs is available in Hypothesis_testing.py.254

The hypothesis to test in the LRT are255

• H0: θ has µ i for i = 1,2, .. equal to 0256

• H1: θ has at least one µ i for i = 1,2, .. different to 0257

From the real catalog {xi,yi, ti,mi}n
i=1 we can obtain the maximum likelihood estimators (MLE) of θ using the complete model

and the model that only has µ0, which will be denoted by θ̂ and θ̃ respectively, then our test statistic is defined by

TLR =
L1(θ̂)

L0(θ̃)
,

where L1 and L0 denote the likelihoods of the complete and reduced model. In order to define the rejection region for our
hypothesis testing, we will generate B synthetic catalogs {xi,yi, ti,mi}nb

i=1, with b = 1, ...,B, using θ̃ from the reduced model.
Once the synthetic catalogs are obtained, we estimate the MLE for both models to each synthetic catalog to obtain a pair θ̂b and
θ̃b, which allows to define

TLR,b =
L1,b(θ̂b)

L0,b(θ̃b)
,

where L0,b,L1,b denote the Likelihood functions of the reduced and complete model using the synthetic catalogue b. It is258

important to note that the idea of the bootstrap methodology is to obtain an approximation of the distribution of our estimators259

through empirical distributions obtained by resampling64.260

Finally we will reject H0 in favor of H1 at a confidence level γ if the following expression is fulfilled

#{TLR,b : TLR,b > TLR}
B

≤ γ,

where # denotes the cardinality of the set.261

While the LRT allows us to determine whether there is evidence that the full model is preferable to the reduced model, it is
not informative in terms of seeing which µ i

uv are contributing to that conclusion. Taking this into account and the fact that we
already calculate θ̂b for all synthetic catalogs, we can examine marginally which µ i

uv from θ̂ , denoted by µ̂ i
uv, are significantly

greater than the corresponding µ i
uv from θ̂b, denoted by µ

i,b
uv . i.e., we can define

Tuv =
#{µ i,b

uv : µ
i,b
uv ≥ µ̂ i

uv}
B

,

and conclude that µ̂ i
uv is significantly higher than µ i

uv under the reduced model at level γ if Tuv ≤ γ .262
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Note that the value µ i
uv for i = 1,2, ... can be 0 if no earthquake was observed in the square Duv during the interval (Si,Ei)263

or if the observed earthquakes were classified as offspring of an earthquake that ocurred prior to (Si,Ei).264

In the section 4 this hypothesis testing methodology is applied for records in Guerrero, Mexico and the Boso Peninsula,265

Japan.266

Additionally, since we are obtaining synthetic catalogs with a sample size nb, we select the size of our mesh in equation 12
as the nx = ny that minimize

1
B

B

∑
b=1

(n−nb)
2.

In other words, the mesh size is selected through minimize the mean squared error of the number of earthquakes. It is worthy to267

mention that Asim et al.66 have proposed the idea of use a multiresolution mesh to improve the computational time, nevertheless268

due the size of our region a non multiresolution mesh is still computationally affordable.269

3 Data270

3.1 Mexico271

In figure 1, all the epicenters in the study are shown in blue, on a mesh with nx = ny = 14, following the notation in equation272

(12). The earthquake catalog was obtained from the Advanced National Seismic System (ANSS)67, with dates from 2000/01/01273

to 2016/12/31, and magnitudes greater than or equal to 4.3. Only the earthquakes related to plate subduction (i.e., on the274

landward side of the trench) were considered in this study. The magnitude completeness of the ANSS catalog in the study275

region was assessed using the Maximum Curvature Method68, and the magnitude of completeness (Mc) was found to be M4.0.276

However, as this method is known to systematically underestimate Mc by a fraction of a unit69, M4.3 was used as the threshold277

M0 in equations (3) and (5) in the present work.278

On September 8, 2017, an earthquake of M8.2 occurred in Mexico and some studies, such as70, have suggested that it may279

have broken the entire subducted Cocos lithosphere and significantly altered the seismicity in the subduction system. For this280

reason, we limit our study period to the end of 2016.281

Figure 1. Seismicity data from Guerrero, Mexico. Earthquakes epicenters67 are shown in blue. Green circles are magnitude
scale. The red squares define the grid used in Algoritm 1. The pink line denotes the Middle America Trench71. The gray lines
show the political division of Mexico72, the blue, orange, fuchsia contours are the 4 cm slip contours curves digitalized from73

of the 2001-2002, 2006 and 2009-2010 SSE respectively, the black curve is the 15 cm slip contour of the 2014 SSE digitalized
from4. The yellow cross correspond to the location of Cayaco GNSS station. The contour lines in purple are the slab model
from74. We also present the slip distribution contours at 1-meter intervals from 1 to 6 meters for the earthquakes with M > 7,
using data from67. These earthquakes ocurred on 2003/01/22, 2012/03/20, and 2014/04/18, with epicenters -104.1040E°

18.770N°, -98.2310E° 16.493N°, and -100.9723E° 17.397N° and magnitudes 7.6, 7.4 and 7.2, respectively.

In figure 2, the North-South component of the GNSS time series of the Cayaco (CAYA) continuous GPS monitoring station282

is presented. CAYA is located in Guerrero state, Mexico, at -100.2672E°,17.0485N°. The duration of SSEs can be defined as283

the periods of southward displacements at this station9, and the SSEs appear to have a periodicity of approximately four years.284

This GNSS data is available in https://github.com/isaiasmanuel/ETAS as caya_ns.285
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To estimate the start and end times (Si and Ei) of the SSEs, b-splines75 are fitted to the raw data. The duration of the SSEs286

is defined by the periods when the spline has a negative slope, as shown in figure 2. The data for this work was provided by the287

Servicio Sismológico Nacional (SSN) of Mexico and by the Department of Seismology, IGEF UNAM.288

Figure 2. Global navigation satellite system data at Cayaco station. North-to-south component at Cayaco station (blue).
Fitted b-spline polynomial (orange). The periods when the data slope is negative is indicated by vertical red lines, and the
purple vertical lines are when an earthquake with M > 7 ocurred.

The SSE slip contour curves with 4 cm of slip spacing (from 2 cm to 18 cm) of the first 3 SSEs (the 2001-2002, 2006, and289

2009-2010 SSEs) have been digitalized from Radiguet et al.73. The 15 cm slip contour of the 2014 SSE was digitalized from4
290

and is presented in Figure 1. The expected result of the algorithm 1 is that if an earthquake triggering effect of SSEs exists, µ i
291

with i = 1,2,3,4 should have an increase near the SSE slip contours.292

3.2 Japan293

To test the flexibility and capability of our model, we additionally explored the Boso Peninsula, located in the Sagami Trough294

subduction zone in Japan. The seismicity-triggering effect of SSEs and swarm activity produced during SSE periods in the295

Boso Peninsula have been previously studied by Okutani & Ide22 and Fukuda30. For this analysis, we used data from the296

Japanese Meteorological Data76 from 2001/01/01 to 2009/01/01 and M0 = 3. Accoding to the geodetic analysis by Fukuda30,297

during this period, two SSE ocurred from 2002/10/01 to 2002/10/19 and from 2007/08/12 to 2008/08/25. These periods were298

used to define µ1 and µ2, respectively.299

Figure 3 shows the seismicity during our study period, and the mesh used in Algorithm 1, in this example nx = ny = 6. The300

daily slip rate distributions of 4 m
year for the 2002 and 2007 SSEs are also presented. The digitized data correspond to the slip301

rates on 2022/10/08 and 2007/08/16 from30, which represent the days with the highest slip rates.302

It is important to note that, while the SSEs in Mexico occurred over several months, those in the Boso Peninsula lasted only303

several weeks. This substantial difference in time scale is a key reason for analyzing the performance of our model in both304

regions.305

4 Results306

4.1 Mexico307

Using µ1, we observe a substantial increase in the background seismicity of 0.18 Events
deg2day

, compared to the stationary background308

rate of 0.01 given by µ0, during the 2001-2002 SSE in the square with a vertex at -100.11E°, 17.18N° (Figure 4). It is important309

to note that this area is located close to the regions with the largest slip gradient in the slip contours of figure 4.The significant310

influence of µ1 on the background seismicity is further supported by Figure 5, which highlights the squares with a significant311

T i
uv at the 90% confidence level using B = 100. Additionally, the LRT rejects the null hypothesis (p-value = 0.09) in favor of312

our model.313

Since SSE slips release stored elastic energy, the regions with the largest SSE slips have experienced a reduction in314

cumulative stress. In contrast, stress increases just outside the margins of the SSE patches, where an increase in background315

seismicity can be expected due to the triggering effects. This is consistent with our estimation in Figure 4.316
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Figure 3. Seismicity data from the Boso Peninsula, Japan. The colors are the same as in Figure 1, except for the SSEs. The
fuchsia and red contours denote the daily slip rate distributions of 4 m

year for the 2002 and 2007 SSEs, respectively, digitized
from30.

Regarding µ2 and µ3, we observe values greater than zero next to the epicenter of the 2003/01/22 earthquake and in the317

margins of the 2006 and 2009-2010 SSEs. Nevertheless, these values are too small and dispersed to conclude that a triggering318

effect could be visible. Furthermore, as shown in Figure 5, the observed values in nearly all the squares are not statistically319

significant.320

Radiguet et al.4 have discussed that the 2014/04/18 M7.3 Papanoa earthquake was triggered by the 2014 SSE. Consistently,321

our model shows a significant increase in the background seismicity rate during the SSE period in the square that contains322

the epicenter, as well as in the square with vertex at -100.73E°, 16.89N° where, according to4, the SSE caused a slip of323

approximately 0.05 m.324

We also found a significant value of µ4 in squares with vertices at -98.88E°, 16.03N° and -98.26E°, 16.89N° which are next325

to the epicenter of the 2012/03/20 earthquake. Although we have focused this work on discussing changes in seismicity during326

periods of SSEs, it is important in future work to consider the background seismicity variations around large earthquakes to327

account for possible tectonic stress rearrangements.328

While µ1 reached the highest values among all µ i, µ2 and µ3 exhibited much lower levels of activity. This may be related329

to differences in the source characteristics of each SSE (i.e., moment magnitude, duration, and slip distribution).330

In terms of moment magnitude, the 2001–2002 SSE was the largest (Mw 7.65), while the 2006, 2009–2010, and 2014 SSEs331

had smaller magnitudes of Mw 7.49, Mw 7.54, and Mw 7.60, respectively, according to Radiguet et al.4, 73. The duration of the332

2001–2002 SSE was 436 days, while the other three SSEs lasted 314, 510, and 378 days, respectively.333

In particular, the 2009-2010 SSE exhibited relatively small moment magnitude and longest duration, indicating a lower334

moment rate. This may explain our observation that this SSE did not produce a detectable triggering effect for earthquakes of335

M4.3 or larger.336

To show the validity of the estimation presented in this work, the genealogy of earthquakes defined by the estimators337

obtained using Algorithm 1, is presented in Figure 6. In this figure, all the earthquakes in our dataset are shown with arrows338

pointing to their aftershocks, in the figure only arrows where PO
i j ≥ 0.5 are presented.339

An anomalous arrow was observed originating from the earthquake with coordinates -102.540E°, 18.026N°. This may be340

due to the fact that the time between both earthquakes was only 6.86 hours, and the fact the second earthquake is in a square341

where only 3 events were recorded throughout the entire study period. This arrow may be an unreliable result.342

To clarify the results in Figure 6, a zoomed-in view of indices 183 to 192 is presented in the Figure 7a. This window was343

selected because it contains the largest earthquake (event 183) in our data set, with a magnitude of 7.6. As it can be seen in the344

Figure 7a, earthquake 190, with an epicenter at -104.37E◦,18.54N◦, could be an offspring of the earthquakes 183,184, 188 or345

189. Therefore, the 4 arrows pointing to it are lighter in color than the arrow between earthquakes 183 and 184, which have an346

associated probability close to 1.347
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(a) µ0

(b) µ1 (c) µ2

(d) µ3 (e) µ4

Figure 4. Estimated background seismicity for theMexican dataset. µ i with i=0,1,2,3,4 are estimated using Algorithm 1.
The white contours in µ1, µ2 and µ3 represent the slip distributions with 4-cm slip intervals for the 2001-2002, 2006, and
2009-2010 SSEs, respectively, digitized from73. In µ4, the slip contour of the 2014 SSE is shown.

The figure in 7b allows not only to see which earthquakes are background events and which are offsprings, but also to348

recover an estimated entire genealogy—an idea that has been previously explored in the works of Rasmussen48 and Fox et al.38.349

The b-value for our dataset is 1.254 and the estimated vector of aftershock parameters (A,α,c, p,d) is (0.118 events, 1.112,
0.021 days, 1.363, 0.0048 deg2). The expected total value of earthquakes using the data in this section and Algorithm 1 is∫ T

0

∫∫
S

λ (t,x,y|Ht) = 774.15,

using our sample of 794 earthquakes. Figure 8a shows a histogram of the values (i.e., the probability of each earthquake being
a background event):

(1−ρ j) =
4

∑
s=0

p̂s
ii.

In this figure, we observe a bimodal density concentration near 0 and 1, which is similar to the one presented by Zhuang et al.15.350

The probability of being an aftershock is considerably lower. This could be due to the use of M0 = 4.3, because, as shown in351

figure 8b, for the Boso Peninsula in Japan (M0 = 3), there are more aftershocks in proportion than in the Mexican case.352

4.2 Japan353

According to30, the magnitudes of the observed SSEs are 6.67 and 6.65 for the 2002 and 2007 events, respectively. Although354

they had shorter durations than the SSEs in Guerrero, Mexico, the SSEs in the Boso Peninsula, Japan, have exhibited notable355
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(a) T 1 (b) T 2

(c) T 3 (d) T 4

Figure 5. Significant T i values for the Mexican dataset. The T i values with i = 1,2,3,4 that are significantly different from
zero are shown.

Figure 6. Offspring estimation for the Mexican dataset. Map of earthquakes with arrows pointing from events to their
offspring according to PO.

increases of the background seismicity rate, as it can be observed in figure 9. In both cases, the square with the highest value356

has a vertex 140.5E°, 35.75N°, where µ1 and µ2 reach values of 2.65 and 3.02, respectively, while µ0 for the same square was357

0.03.358

For both SSEs, T i for the squares associated with the maximum value of µ1 and µ2 was statistically significant, as shown359

in Figure 10, and the the LRT rejects the null hypothesis (p-value = 0.01) in favor of our model. Also, as expected, the increase360

in the background seismicity rate was observed in the margins of the SSE patches. This is consistent with the Mexican results361

The b-value for this data is 0.709, and the estimated vector of aftershock parameters (A,α,c, p,d) is (0.365 events, 1.03,
0.002 days, 1.029, 4.101e-05 deg2). And we obtain∫ T

0

∫∫
S

λ (t,x,y|Ht) = 554.10,

for our sample of 575 earthquakes. As in section 4.1, Figure 12 presents the estimated genealogy.362
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(a) (b)

Figure 7. Genealogy of events 183-192. In Figure 7a, the matrix POfor indices 183 to 192 is shown. 7b presents the same
events as a genealogy.

(a) (b)

Figure 8. Background probability histogram. Histograms of probabilities of being a background event for all earthquakes
in our dataset are presented. (a) Mexican dataset (b) Japanese dataset.

5 Discussion and Conclusions363

We have successfully developed an inhomogeneous spatio-temporal ETAS model. Our approach extends the ideas of Fox et al.38
364

by introducing a piecewise constant spatial background seismicity over time, which contrasts with their non-time-dependent365

approach. Furthermore, this approach can be regarded as the spatio-temporal extension of the model proposed by Okutani &366

Ide22, which considers only the temporal components.367

We also extended the work of Li et al.16 by employing a marked point process. Furthermore, we did not assume that spatial368

and time contributions of the background seismicity interact solely through multiplication, and we accounted for differences in369

the spatial distribution of increased background seismicity for each SSE.370

Unlike Marsan et al.27 and Reverso et al.28, which rely on subjectively chosen local spatio-temporal windows, we used371

the estimation of the SSE durations from GNSS data and utilized them in our seismicity modeling. Moreover, rather than372

using an approximate approach that sequentially optimizes changes in the background seismicity rate across numerous small373

spatio-temporal windows, our method simultaneously performs a maximum likelihood estimation of spatio-temporal variations374

in the background seismicity rate over the entire analysis region and period, which represents a key technical advance of our375

model.376
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(a) µ0

(b) µ1 (c) µ2

Figure 9. Estimated background seismicity for the Japanese dataset. µ i with i=0,1,2 estimated using Algorithm 1 are
shown. The white contours represent the daily slip rates presented in figure 3 for the 2002 and 2007 SSE.

Furthermore, for the first time, we quantitatively evaluated the relationship between seismic activity and SSEs in the377

Mexican subduction zone using a statistical seismicity model that accounts for not only regular earthquakes but also SSEs. Our378

results from Mexico demonstrate statistically significant increases in the background seismicity accompanying Guerrero SSEs,379

highlighting the seismological novelty of this study.380

Our model also successfully detected statistically significant increases in background seismicity associated with SSEs in381

the offshore Boso Peninsula region of Japan. Despite the substantial differences in the time scales of SSEs between the Boso382

Peninsula and Guerrero, Mexico, consistent results were obtained—namely, an increase in background seismicity near the383

margins of the SSE patches. This demonstrates the adaptability and broad applicability of our model to different datasets.384

The assumptions made for our model were flexible enough to be applied in different regions, and we expect to continue385

improving the model and exploring other plate boundaries where SSEs occur, such as in New Zealand and Peru12, 13. Applying386

our model to these regions will enable a deeper understanding of how SSEs trigger fast earthquakes.387

In future work, we plan to extend our algorithm to allow dependencies between mainshock and aftershock magnitudes.388

Currently, we model magnitudes independently. However, it is important to explore possible dependencies between magnitudes,389

as Nandan et al.59 found evidence of such dependencies in California, USA.390

We also intend to improve our algorithm by replacing the piecewise estimators of µ i with smooth functions in the space391

domain. In the context of the ETAS model, interesting ideas have recently been explored for this purpose, such as the use392

of Dirichlet processes32 (DP), or Gaussian processes35 (GP). An additional advantage of using DP or GP is that they allow393

inference to be performed within a Bayesian framework.394
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(a) T 1 (b) T 2

Figure 10. Significant T i values for the Japanese dataset. The T i with i = 1,2 that are significantly different from zero are
presented.

Figure 11

Figure 12. Offspring estimation for the Japanese dataset. Map of earthquakes with arrows pointing from events to their
offspring according to P0.

6 Data availability395

Data is provided within the manuscript.396
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App. 1 Additional Figures553

(a) (b)

Figure 13. Ranked time vs magnitude. (a) Mexican dataset (b) Japanese dataset.

(a) (b)

Figure 14. Maximum curvature magnitudes. (a) Mexican dataset (b) Japanese dataset. In purple the date of earthquake
with magnitude greather than 7, and in red a moving average taking 50 points.
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As mentioned in Section 2.1, if a catalog exhibits STAI after strong earthquakes, a reduction in the occurrence of small554

earthquakes would be expected, which is not evident in Figure 13. We also estimate the maximum curvature magnitude using555

10-day bins for our catalog, as shown in Figure 14. For the Mexican case, we set the cutoff magnitude at 4.3, primarily to reduce556

the bias introduced by the change in the mean in 2009, while for the Japanese case, we set it at 3 to reduce the computational557

load. We also do not see any substantial changes associated with large earthquakes in this figure.558

(a) (b)

Figure 15. Mexican genealogy using alternative kernels. (a) Bivariate Gaussian (b) Bivariate t kernel.

(a) (b)

Figure 16. b-more-positive estimator for the Mexican dataset. (a) b-more-positive estimator for different cutoffs and lags,
(b) Magnitude differences used for each estimator, with ℓ= 10.

b-value A α c p d
0.6 1.178e−01 1.121e+00 2.121e−02 1.358e+00 4.724e−03
2.5 1.180e−01 1.106e+00 2.173e−02 1.372e+00 4.979e−03

Table 1. Parameter values for different b-values.

With the aim of obtaining more robust b-value estimators, van der Elst42 proposed the b-positive estimator. Instead of work
with a sample of magnitudes mi, i = 1,2, ...,m, which are assumed to follow the Guttenberg Richter law55, that is, independent
exponential random variables with rate b log(10) shifted by Mc, he proposed using the auxiliary variables Zi = |mi+1−mi| with
i = 1,2, ...,m−1. He defines the b-positive estimator as

b+(M′c) =
(

∑
m−1
i=1 Zi1(Zi ≥M′c)

∑
m−1
i=1 1(Zi ≥M′c)

−M′c
)−1

log(e).
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In his work, he exhibited through simulations that the estimator can improve the estimation of the b-value, particularly in the559

presence of incompleteness as modeled by Ogata & Katsura model77.560

One of the main concerns regarding the b-positive estimator is that if we only use the Zi where 1(Zi ≥M′c), the sample
size decreases significantly, in order to solve this problem, Lippiello & Petrillo58 have proposed the b-more-positive estimator,
they added an extra hyperparameter l to define

ϑ
l
i = min{i : |mi+ j+1−mi+ j|> M′c, j = 0, .., l−1},

for the non empty sets, which it allows to define

Z′i = |mi+ϑ
j

i +1−mi+ϑ
j

i
|.

Then the b-more-positive estimator is defined as

b+l(M′c) =
( 1
|I |∑I

Zi−M′c
)−1

log(e).

where I is the set of indexes which {i : |mi+ j+1−mi+ j|> M′c, j = 0, .., l−1} is non empty. As can be seen in Figure 16b, this561

allows an increase in the sample size for our estimation, nevertheless, it is important to note that this increases the dependence562

between the Z′i variables compared to the Zi in the b-positive estimator.563

Lippiello & Petrillo studied the performance of the b-more-positive estimator through numerical simulations, in their564

example the b-more-positive showed an improvement with respect to the b-positive approach, in part because the b-positive565

estimator is a particular case of the b-more-positive one if we take l = 0.566

Although estimators have proven useful, new areas of research on this new type of estimator emerges, mainly due to the567

lack of independence of the Z′i variables and how to obtain maximum likelihood estimators since the current b-positive and568

b-more-positive estimators rely on the pseudolikelihood. Although this facilitates the calculation of estimators, it remains an569

approximation of the likelihood.570

ARTICLE IN PRESS


	Introduction
	Methodology
	Introduction to Spatio-Temporal ETAS Model
	Model
	Hypothesis Testing

	Data
	Mexico
	Japan

	Results
	Mexico
	Japan

	Discussion and Conclusions
	Data availability
	Acknowledgments
	Funding
	Author Contributions Statement
	References
	Additional Figures

